Comparison of different methods for longitudinal data with missing observations
نویسنده
چکیده
COMPARISON OF DIFFERENT METHODS FOR LONGITUDINAL DATA WITH MISSING OBSERVATIONS Lin Sun July 27, 2010 Longitudinal studies occupy an important role in scientific researches and clinical trials. When taking the analysis of longitudinal data, investigators are often confronted with missing data which will produce potential biases, even in well-controlled condition. In the literature, missing data could be classified as missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). Generalized estimating equations (GEE), Linear mixed effects model (LME) and Pattern-mixture effect model (PME) are the commonly used analysis methods for longitudinal data. In the current work, we carried out simulations on evaluating the performances of the different methods on analyzing longitudinal data. Based on our simulations, we conclude that when missing is MCAR, all the methods give valid estimation; when missing is MAR, GEE and PME give biased estimating results, while LME provides valid estimation. The choice of the patterns in PME may cause biased results; and when missing is MNAR, none of these models works very well, however, the selection of the patterns in PME may deserve further investigation.
منابع مشابه
چند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملتحلیل پاسخهای رتبهای طولی با گمشدگی غیریکنوا در بررسی اثر درمان جامع بر عملکرد بیماران مبتلا به سایکوز
Background & Objectives : Longitudinal studies are used in many psychiatric researches to evaluate the effectiveness of treatment. The main characteristic of longitudinal studies is repeated measurements of the patients over time. Since observations from the same patient are not independent from each other, especial statistical methods must be used for analyzing the data. Missing data is an i...
متن کاملEmpirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models
In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical normal models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...
متن کاملExtension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کامل